Using natural history collections in ecological research: detecting the effects of landscape and climate change in bat populations.

Heather Wood & Sara Cousins,

Biogeography and Geomatics, Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University

Three theories can be used to predict body size change in mammals:

Bergmann's rule (¹): > Reduction in body size due to climate change

Bat species have adapted wing morphology according to their habitat preferences:

Mobile species:

Small surfaced, narrow wings

Fly fast, long distances

e.g. Nyctalus noctula or Eptesicus nilssonii

Island Rule (²):

> Increased body size of small mammals due to habitat fragmentation.

Resource Rule (³):

 \succ Increased body size due to high food supply

Do any of these rules apply to bats?

> Hunt in open or edge habitats

Less mobile species:

- > Large surfaced, broad wings
- > Fly slowly but more manoeuvrable
- > Hunt in closed habitats

e.g. Myotis spp. or Plecotus auritus

Have wings adapted to landscape change?

What we know so far

 \geq Resource rule shown when Pipistrellus kuhlii crania increased in size due to street lighting increasing prey items (⁴). > Rapid morphological change in bird wings and crania due to climate and landscape changes has been shown (^{5, 6, 7,}). Though these studies use time as a proxy for climate and landscape change.

Research questions

I. Does body size in bats change according to Bergmann's, Island or Resource rules? 2. Is bat wing morphology adapting due to changes in open or closed habitat?

Methods

- > Over 500 Swedish museum specimens were measured.
- > Three species: Eptesicus nilssonii, Pipistrellus pygmaeus and Plecotus auritus were measured.
- > Specimens date from 1835 to 2016.
- > Cranial and wing measurements were taken (Figure 1).

- Empirical landscape and climate change data used.
- > Historic maps from late 19th C, & early 20th C digitised (Figure 2; see Poster by Auffret, A., BES, 2016).
- Climate data may include: European Climate Assessment & Dataset project (⁸), high resolution climatic topographic maps (9), Swedish climate data (10).

Figure I: Various skull and wing measurements taken on bat specimens collected in Sweden during 1835 to 2016.

Acknowledgements:

Thanks to all the collection staff at the Swedish Museum of Natural History, Uppsala Evolution Museum, Gothenburg Natural History Museum and Lund Biological Museum for their enthusiasm and help.

Figure 2: (a) Old Cadastral maps dating from late 19th C in Sweden (b) Economic maps from early 20th C in Sweden. © Lantmäteriet.

References:

- Bergmann, C., 1848. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse.
- 2. Van Valen, L., 1973. Pattern and the balance of nature. *Evolutionary Theory*, 1(31), p.e49.
- McNab, B.K., 2010. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia, 164(1), pp.13-23
- Tomassini, A., Colangelo, P., Agnelli, P., Jones, G. and Russo, D., 2014. Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii: a response to changing 4. climate or urbanization?. Journal of Biogeography, 41(5), pp.944-953.
- 5. Brown, C.R. and Brown, M.B., 2013. Where has all the road kill gone?. Current Biology, 23(6), pp.R233-R234.
- 6. Desrochers, A., 2010. Morphological response of songbirds to 100 years of landscape change in North America. *Ecology*, 91(6), pp.1577-1582.
- Goodman, R.E., Lebuhn, G., Seavy, N.E., Gardali, T. and Bluso-Demers, J.D., 2012. Avian body size changes and climate change: warming or increasing variability?. Global Change Biology, 18(1), pp.63-73.
- 8. Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C. and Heino, R., 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International journal of climatology, 22(12), pp.1441-1453.
- 9. Meineri, E. and Hylander, K., 2016. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography.
- 10. Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M. and Karlén, W., 2005. Highly variable Northern Hemisphere temperatures reconstructed from low-and highresolution proxy data. *Nature*, 433(7026), pp.613-617.